

Olaf N. Hartmann

60th annual meeting of the Austrian Physical Society

http://www.oeaw.ac.at/smi

Contents

- The GSI and its Accelerators
- The FOPI Experiment
 - Setup and Performance
 - Heavy Ion Collisions
 - Proton and Pion induced Reactions
- Conclusions and Outlook

GSi Helmholtzzentrum für Schwerionenforschung GmbH

Schwerionensynchroton SIS 216 m circumference 18 Tm bending power

Beams at the SIS: lons (Li – U) \leq 2 GeV/u (A/q=2) Protons \leq 4.5 GeV Pions \leq 2.8 GeV/c

NIPNE Bucharest, KFKI Budapest, LPC Clermont-Ferrand, GSI Darmstadt, FZ Dresden-Rossendorf, University Heidelberg, ITEP Moscow, KI Moscow, TU Munich, Korea U Seoul, IReS Strasbourg, University Warsaw, SMI Vienna, RBI Zagreb

Particle measurement with FOPI

Particle measurement with FOPI

Systems studied by FOPI

- Heavy ion collisions (from 90 AMeV to 1.9 AGeV)
 - Al+Al, Ca+Ca, Ni+Ni, Ru/Zr+Ru/Zr, Au+Au, Pb+Pb
 - Ca+Au/Au+Ca, Ni+Pb
- Proton+Proton (3.1 GeV)
- π⁻ + C, AI, Cu, Sn, Pb (1.15 GeV/c)

Relation between temperature, density and quark condensate

Equation of State of nuclear matter

7

Heavy Ion Collisions

IQMD: 2 AGeV Au+Au ($\Delta t = 10 \text{ fm/}c$)

central collision b = 0

high density

expansion

Collective Effects: Flow

"sideward flow"

"squeeze-out"

Phases of a Heavy Ion Collision

Transport Model Calculation (IQMD, C. Hartnack)

Impact

plane

parameter

and beam

axis define

the reaction

Phase diagram of nuclear matter

Flow and Stopping

SIS energies:

flow and stopping reveal extrema

- high pressure
- high density
- correlated

 σ_{NN} smaller than vacuum value

 $\frac{d}{d\phi} \propto 1 + v_1 \cos \phi + v_2 \cos 2\phi$ Stopping Stopping 0.9 ■ 0.4A GeV ∆ 1.5A MeV 0.8 Au+A vartl 0.7 W. Reisdorf et al., 0.6 0.5 Size dependence 0.4 Side flow Side flow 0.4A GeV ∆ 1.5A GeV hydro 0.2 nax [p_{xdir}⁽⁰⁾] PRL92 Au+A 0.1 Ca+Ca **Excitation Functions**-Size dependence - 10^{-1} 100 40 80 120 160

Stopping or partial transparency?

Z system

• maximum around 500 AMeV

beam energy (GeV/A)

- full stopping never reached
- no saturation in system size

Flow of Strange Particles

Kaons are produced in the High density phase of the collisions ("messengers from the fireball")

K[–] -Flow very stringent test for transport models

 $\frac{dN}{d\phi} \propto 1 + v_1 \cos \phi + v_2 \cos 2\phi$

In-Medium effects in pion induced reactions $\pi^- p \rightarrow K^0 \Lambda$

ratio Pb/C target

inklusive cross sections

Comparison to HSD \rightarrow repulsive Potential of ~ 20 MeV

Normal nuclear matter density

dashed: $\rho = \rho_0$

Conclusions

- The FOPI experiment (today in Phase III) is active since ~ 1990 at the SIS of the GSI
 - Coverage of nearly the full solid angle
 - 2007 RPC Time-of-Flight barrel
- Study of Heavy Ion Collisions
 - High density and pressure (2 $\rho_{0})$
 - Flow and Stopping
 - Production of strange particles (Kaons, Lambda, ...)
 - Equation of State
- Proton+proton reactions
 - Search for the K-pp nuclear cluster
 - $\Lambda(1405)$
- Pion induced reactions
 - In-medium effects at normal nuclear matter density

Outlook

The prototype of the PANDA TPC with GEM readout is adopted to the FOPI setup

First in-beam test September/October

 \rightarrow Improvement of forward PID

"Pion induced in-medium production and propagation of strangeness"

Beamtime first half 2011; last experiment (so far) of the FOPI core program

We acknowledge the support by the FWF and EU-FP7

