Search for a K⁻pp Bound State with FOPI ♦ Status of the Experiment

Olaf Hartmann for the FOPI Collaboration

Stefan-Meyer-Institut für Subatomare Physik Österreichische Akademie der Wissenschaften Vienna, Austria

Olaf N. Hartmann

Outline

- Introduction
 - Bound State in p+p Collisions?
- The FOPI Detector at GSI-SIS – Additional Hardware
- Test Experiments and Production Run

 Performances and Data Analysis
- Outlook
 - Strangeness Production and Propagation in Pion induced Reactions

Introduction

Y. Akaishi & T. Yamazaki, PRC65(2002) prediction of bound states with small width involving strangeness

Y.A. and T.Y., PRC76(2007) enhanced production of *K*⁻*pp* in p+p collisions predicted

Introduction Production and Decay of a K⁻pp State

$$p + p \rightarrow K^+ + K^- pp \ge 3 \ \mu b$$

$$proton + charged decay$$

$$products of a \ \Lambda \ hyperon$$

$$charged kaon$$

$$K^- pp \rightarrow \begin{cases} \Lambda + p \rightarrow \pi^- + p + p \qquad 50\% \\ \Sigma^0 + p \rightarrow \pi^- + p + \gamma + p \qquad 50\% \end{cases}$$

background

total cross section \approx 40 mb $p + p \rightarrow K^+ + \Lambda + p$ 40 µb $p + p \rightarrow K^+ + \Sigma^0 + p$ 15 µb

detect a final state out of four charged particles

Olaf N. Hartmann

The FOPI Detector at GSI-SIS

proton beams up to 3.5 GeV slow extraction up to 10 s extracted beam intensities up to $O(10^{10})$ particles/spill

FOPI Setup

Olaf N. Hartmann

FOPI Detector Setup Acceptance

Olaf N. Hartmann

Olaf N. Hartmann

FOPI Detector Setup A-Trigger SIAVIO

SIAVIO A mounted on its board

two detector units of SIAVIO B mounted on the board

Olaf N. Hartmann

FOPI Detector Setup A-Trigger SIAVIO

the completely assembled SIAVIO detector in its housing ready for being mounted and connected

Olaf N. Hartmann

Λ-Trigger SIΛVIO

typical ADC spectrum of one strip (in beam); MIP peak well separated geometrical matching with tracks from the forward drift chamber allows for vertex reconstruction

SIAVIO Trigger Performance

trigger w/o threshold on SIAVIO ("level 1")

condition set

FOPI Detector Setup New Start Detector System

iron tubes and box for magnetic field shielding

wish to run with high beam current \rightarrow construction of a segmented start counter

five scintillator strips, 2 mm wide

Olaf N. Hartmann

FOPI Detector Setup Start Detector Performance

intensity distribution – mostly strip no. 3 (QDC 5+6) is hit

time resolution: time difference between both end of the strip in the center (no. 3)

P. Bühler

ECT* Trento, October 2009

Olaf N. Hartmann

FOPI Detector Setup Liquid Hydrogen Target

2.5 cm effective lengthof the target cell(1.8% interaction)

Olaf N. Hartmann

FOPI Detector Setup Liquid Hydrogen Target

Olaf N. Hartmann

FOPI Detector Setup LH₂ Target and VETO Detector

Test Experiments and Production Run

April 2009: test experiment with 3 GeV proton + $CH_3(CH_2)_nCH_3$

August/September 2009: 14 days production run; 3.1 GeV proton + LH₂

~ $80 \cdot 10^6$ "\Lambda-trigger" events (LV.2) recorded reduction level 1/level 2: factor 11-12 ~ 20.000 "forward \Lambda" expected

Calibration for the various subdetectors is still in progress!

DISTO

How do/could the Data look like?

Data Analysis: A Reconstruction

Λ decay products under forward angles

Data Analysis: K⁺

Olaf N. Hartmann

Data Analysis: K⁺ Missing Mass

2.4

2.6

2.2

Olaf N. Hartmann

1.8

we are in the expected range

2

mmK

1.6

1.4

Outlook GEM-TPC

small prototype of the PANDA time projection chamber with GEM-readout further improvement of charged particle identification

Outlook Pion Beam Experiment

Conclusions

- Deeply bound states of K⁻ predicted by Akaishi & Yamazaki 2002
 - p+p reaction at high energy proposed to form the fundamental cluster K⁻pp
- Experimental Program started with FOPI at GSI-SIS
 - production run accomplished recently
- Complementary information from pion induced reactions envisaged

